制服丝袜成人电影|欧洲美女激情AV|久久天堂无码AV|日本一及黄色电影一及黄色|天摸天操天啪欧美|AA级黄色一级特黄成人大片|日韩特级AAA毛片|特级黄色成人录像|激情啪啪综合亚洲A黄|特黄一级AAA日本在线观看

歡迎訪問智慧醫(yī)療網(wǎng) | 網(wǎng)站首頁
 

“AI”制藥可能照進現(xiàn)實

發(fā)布時間:2022-10-17 來源:醫(yī)新說 瀏覽量: 字號:【加大】【減小】 手機上觀看

打開手機掃描二維碼
即可在手機端查看

近日,據(jù)媒體報道,美國華盛頓大學戴維·貝克教授團隊在《細胞》雜志上發(fā)表論文,利用人工智能(AI)技術(shù)平臺精準地從頭設(shè)計出能夠穿過細胞膜的大環(huán)多肽分子,開辟了設(shè)計全新口服藥物的新途徑。

近年來,AI加速助力新藥研發(fā),幾乎參與了從藥物靶點發(fā)現(xiàn)到臨床試驗的全流程。

AI融入藥物研發(fā)各個環(huán)節(jié)

一款藥物從無到有,要歷經(jīng)漫長且坎坷的過程。其中主要包括4個研發(fā)階段,即靶標選擇和驗證、化合物篩選和先導優(yōu)化、臨床前研究以及臨床試驗。而每一個階段又涉及到許多具體環(huán)節(jié)。

林建平舉例說,比如在靶標選擇和驗證階段,需要確定疾病相關(guān)的靶標。根據(jù)傳統(tǒng)實驗去確定靶標,既費時成本又高,而使用AI技術(shù)并結(jié)合已有的組學大數(shù)據(jù),根據(jù)已知的以及新產(chǎn)生的實驗數(shù)據(jù),就可以快速分析出潛在候選靶標,節(jié)約時間和成本;或在已知先導化合物的功效,但是缺少明確靶標而導致具體作用機制和副作用不明確時,AI可以大范圍預測靶標,縮小候選靶標的范圍,最后結(jié)合實驗手段快速定位真正的靶標?!癆I幫助藥物研發(fā)者快速找到靶標,加快先導化合物向藥物轉(zhuǎn)化的進程?!绷纸ㄆ浇榻B。

對于已有的藥物,AI同樣可以通過靶標預測,發(fā)現(xiàn)新的靶標,從而發(fā)現(xiàn)新的藥物適應癥,這也是一個非常熱門的領(lǐng)域——藥物重定位。

在最重要的臨床試驗階段,AI的應用也起到了事半功倍的效果?!霸谶@一階段,需要在患者身上評價藥物的安全性和有效性,AI可以參與到患者的招募、臨床試驗設(shè)計以及試驗結(jié)果數(shù)據(jù)分析等?!绷纸ㄆ脚e例,比如可以通過AI技術(shù)從過去的臨床患者中,提取患者的個人特征、癥狀、治療效果等數(shù)據(jù),找到最匹配當前試驗的患者;試驗設(shè)計上,AI可以預測合適的藥物劑量、治療方案等;而試驗數(shù)據(jù)上,可以采用AI技術(shù)跟蹤和管理患者的實時情況,預測患者預后情況等。

AI制藥存在諸多挑戰(zhàn)

可以說,AI已經(jīng)滲透到藥物研發(fā)領(lǐng)域的各個環(huán)節(jié),促進了醫(yī)藥產(chǎn)業(yè)的升級,在未來極有可能帶來制藥產(chǎn)業(yè)的變革。隨著目前AI制藥產(chǎn)業(yè)的發(fā)展,在不久的將來,我們可能很快會迎來第一款AI技術(shù)研發(fā)的創(chuàng)新藥物。在期盼之余,很多人也對AI研發(fā)的藥物是否具有風險心存疑慮。

“目前來說,我們利用AI研發(fā)的藥物的風險與傳統(tǒng)的藥物研發(fā)風險是一樣的,包括藥物的副作用、毒性、耐受性等?!绷纸ㄆ浇忉屨f,由于目前AI在藥物研發(fā)中大多起著輔助作用,最后仍舊需要經(jīng)過真實的試驗去驗證其安全性和有效性,需要專家去做評定,所以在風險性上與傳統(tǒng)研發(fā)藥物相同。但是這樣做也帶來了另一個問題,制藥行業(yè)仍以專家經(jīng)驗為基礎(chǔ),成為制約AI制藥發(fā)展的最大阻礙?!爸猿霈F(xiàn)這種現(xiàn)象,主要是由于對AI技術(shù)助力制藥的不信任?!绷纸ㄆ秸J為,隨著接下來幾年AI藥物的成功上市,這個問題必將得到解決;另一方面,目前AI在藥物研發(fā)全流程中,仍然扮演著輔助工具的角色,沒有占據(jù)主導地位,這也就決定了AI制藥產(chǎn)業(yè)難以獲得飛躍式發(fā)展。

而且,AI技術(shù)仍在發(fā)展中,數(shù)據(jù)、算法、算力上的突破也需要一定的時間。如數(shù)據(jù)量不足、數(shù)據(jù)質(zhì)量參差不齊,算法精度不高、算法無法滿足需求等,都為AI在藥物研發(fā)和應用上帶來了困難。

此外,AI制藥還面臨許多其他挑戰(zhàn)。比如生命領(lǐng)域的基礎(chǔ)理論研究還有很多沒有解決的問題;再比如復合型人才的缺少,“懂計算的不懂制藥,懂制藥的不懂計算”,如何更好地把生物問題轉(zhuǎn)化為計算問題,然后用數(shù)字手段去解決,這需要大量復合型人才的參與,而這一類人才的培養(yǎng)也是極其耗時的。


Copyright ? 2022 上海科雷會展服務有限公司 旗下「智慧醫(yī)療網(wǎng)」版權(quán)所有    ICP備案號:滬ICP備17004559號-5